Juan Andrés Cabral

Relative extrema and second order conditions
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Solution

1. Calculating the first-order conditions:
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From the first equation, we obtain z = y and using this in the second equation:
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y =1, so the critical point is (1,1). We calculate the Hessian:
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Replacing in the point, we see that |H|= 0, however, since the function is a sum of terms raised to
even exponents, we know that the minimum will be 0. Therefore (1, 1,0) constitutes a minimum.

2. Calculating the first-order conditions:
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From the first equation, we obtain:
1/y = 8/2*
2 =8y
From the second equation, we obtain:
1=z/y?
Y=z

Solving from the first equation:

z=+/8y
y? =+/8y

The only value that satisfies this is y = 2, and with this, we get the value of x:

And with the second equation:

P =x=4
So the critical point is (4,2). We calculate the second derivatives:
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Calculating the Hessian:
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Evaluating at the point:
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Therefore, since the determinant is positive and gl,; > (0, we have a minimum.

. Calculating the first-order conditions:
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Dividing everything by e*~¥:
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From the second equation, we obtain:
—2? + 2% — 4y =0

Adding to the first equation:
2z —4y =0

From here we get x = 2y. Using this in the second equation:
—dy® +2y° —dy = 29" —dy = —2y(y+2) =0

We have y = 0 or y = —2. This leads to two points: (0,0) and (—4, —2).

We calculate the second derivatives:
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Evaluating at (0,0), the Hessian is:
2 0
= ‘0 —4‘ =8
This is a saddle point. Now, evaluating at (—4, —2):
—0.812  1.083
e ) 1.083 —1.624' =0145>0

. o2 A .
And since 37 < 0, we have a maximum.
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